
AD—A072 380 NORTHWESTERN UNIV EVANSTON IL DEPT OF ELECTRICAL EtC —tic FIG 9/2PERFORMANCE CONSIDERATIONS IN THE MAINTENANCE PHASE OF LARGE—SCe—ETC(up
JUN 79 S S YAU. J S COLLOFELLO F30602—76—c—0397

UNCLASSIFIED RA DC—TR—79—129 PA.

—flu
END

D A f t
FPLNI D

9 ‘-79

I I
==

I 4 I

V ‘

LEVEL
RADC;T~~79.129 I

c~~~~~~S
PERFORMANCE CONSIDERATIONS IN
THE MAINTENANCE PHASE OF LARGE-SCALE
SOFTWARE SYSTEMS
Northw;s:.m Univ.rsity

[~ PP*OVEO FOR PU~UC R ELEASE ; DISTRIIUTION UNUMITED

CD
C-)

-I

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffi ss Air Force Base, New York 13441

79 08 06 ‘030

~~

This report has been reviewed by the RADC Information Office (01) and
is re leasable to the National Technical Information Service (NTIS) . At NTIS
it will be releasable to the gefleral public, including foreign nations.

RADC—TR—79—129 has been reviewed and is approved for publication.

APPROVED: ,~~ ~~~ fl
~~~~~~~ ~‘. ‘~C.(4~~4~o

ROCCO P. IUORNO
Project Engineer

A~PR0VED:

WENDALL C. BAIJMAN, Colonel, U SAF
Chief, Information Sciences Division

4
FOR TEE CO)R(ANDER:~~~~/1 j0

P. HUSS
Acting Chief, Flans Office

j

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (ISIS) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.



UNCLASSIFIED
SECURITY C LASSI FICWTION OF THI S PA GE (Wh..~ 0.1. EnI...d)

I h u  LIT A lAki A f~ 
READ INSTRUCTIONS

A / VP’ I~ I D e i~ JE~ ~J BEFORE COMPLETING FORM
p f r  

~~~~~~~~~~~~~~~~~~~~~~ 2. GOVT ACCESSION NO. 3~ RECI PiENT ’S C A T A L O G  NUMBER

RAD4~TR-79-129r __________________________
4. T I T L E (.d S,bIiU.) 5 . T Y P E OF R E P O R T L P ~~c lop CO v E R E D

~ Interim jechnical ~ep.t t .
(~ j ERFORMANCE ~0NSIDERATIONS IN THE MAINTENANCE 1 Aug 76 — Nov 78

—‘ PHASE OF LARGE—SCAL E SOFTWARE SYSTEMS . - . — 6 P E R F O R MI NG ORG. R~~~ ORT NUM BER

______________________________________ N / A
7. AUTp4OR(.) 8. C O N T R A C T OR GRANT NUMBER(.)

JQ Stephen S. Yau ,: . .
:

~~~~~~~~~~~~~~~~~~~~~~~~~~~
James S./Collofello ~/:.,.

_ F3O60
~~~~ :

C
:Q3!.~7~

9 PE R FORMING O R G A N I Z A T I O N N A M E A N D ADDRESS 10. P RO G R A M E L E M E N T . PR O J E C T , TASK
A R E A & WORK UN I T N U M B E R S

Northwestern University ,“
Dept. of Electrical Engineering & Computer Seienee 62?’~~~ I // I
Evanston IL 60201 5~~~~278 “

.‘ .,“
/

II . C O N T R O L L I N G O F F I CE N A M E A N D AGGRESS /c
J~~~~~~~~ g~~j_o A r E

~Jun~~~979 I

Rome Air Development Center (ISIS) I / ‘3. NuMBER OF P A G E S

Gr if f iss AFB NY 13441

44
IA . MONITORING A G E N C Y NAME S ADORES5(if diIfe,,,, r fr ~,n~ C~

,,
~t~oI1, r ~g O(f ~~e) 15 SECURITY CLASS ‘,(~~~—7

Same _ ,._~1J

l~
’ UNCLASSIFIED

I / .~ IS. D E C L A S S I F I C A T I O N OOW ~~~~R A O ~ N~~
SCHEDULE/ N/A

16. DISTHIBUTION STATEMENT (of f b i . Rep or I)

Approved for public release; distribution unlimited.

17. D IS T R I B U T I O N S T A T E M E N T (of (ha •b~ I,aOI .nt.,ed In BIo~’k 20 , i i di (ID,ent f~oo, Rep or r ~
—

Same

I9 SU P PLEMENTA R Y NOTES

RADC Project Engineer: Rocco F. luorno (ISIS)

!9 K E Y WORDS (Con(in~. “ fD~
,
~ sa aId. i f neca.aa,y Wld I d a n f I f y by b l o r k ~~~~~~~~

Software maintenance, performance consideration , large—scale software systems ,
ripple effect analysis, performance changes, mechanisms of propagation .
performance attributes , critical sections.

20 A B S T R A C T (C ’r t Ino . ~., ~~~~~~~ .ld. I f n.~~a,..,y •n J I d e n f , f ~ S. bI~: . b f .O,~
-

Maintenance of large—scale software systems is a complex and expensive process.
Large—scale software systems often possess both a set of functional and
performance requirements. Thus, it is important for maintenance personnel to
consider the ramifications of a proposed modification from both a functional
and a performance perspective .

n this report the possible effect of program modifications during the main-
tenance phase on the performance of large—scale software systems is analyzed .

FORM \DO 1 J A N 73 1473
— UNC LASSIF IED

_______ ____

S E C U R I T Y C L A S S I F I C A T I O N QF THI S ~~A O(Bben (f~~f~

-7 /

_ _ _ _ _ _ _ _.-- ——— ..*- - - . .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Wh.n DaIm Ent.r.d)

Mechanisms for the propagation of performance changes from one part of the
system to another are identified , and the releationship among these mechanisms,
performance attributes, critical program sections and performance requirements
is also investigated. The development of a maintenance technique for pre-
dicting which performance requirements in the system may be affected by a
proposed modification is outlined. This technique will enable maintenance
personnel to incorporate performance considerations in their criteria for
selecting the type and location of software modifications to be made, and to
identify which performance requirements must be verified after the modification
in order to insure that they have not been violated by the modification.

An additional report is planned for the formal description of the algorithms
composing this maintenance technique .

por
~~

~~ I

s” ~~ce~

_
~~~

—‘:-;i~ c~a~~—

Dt~t . \ \
\

UNCLASSIFIED
SECURITY CLASSIF ICAT ION OF THIS DAGE(WP,.n 0.I. Ent.r.d)

p

LL __ 
_ _ _ _ _ _ _

- —~~~---~
.- 

~~~~~~ -~~ ‘-—- —


‘-. — -.,,- —-

CONTENT S
PaRe

List of Figures 111

1. INTRODUCTION 1

2. PERFORMANCE CONSIDERATIONS IN SOFTWARE LIFE CYCLE 3

3. LEVEL AT WHICH PERFORMANCE CHANGES DUE TO PROGRAM MAINTENANCE
ARE CONSIDERED 4

4. PERFORMANCE DEPENDENCY RELATIONS 6

S. MECHANISMS FOR THE PROPAGATION OF PERFORMANC E CHANGES 14

5.1 Parallel Execution 14
5.2 Shared Resources 14
5.3 Interprocess Communication 15
5.4 Called Modules 15
5.5 Shared Data Structures 15
5.6 Sensitivity to the Rate of Input 18
5.7 Execution Priorities 19
5.8 Abstractions 19

6. IDENTIFICATION OF PERFORMANCE CHANGE PROPAGATION MECHANISMS
IN SOFTWARE SYSTEMS 19

6.1 Identification of Modules Executable in Parallel 20
6 .2 Identification of Shared Resources 24
6 .3 Identification of Interprocess Communication 24
6.4 Identification of Called Modules 25
6.5 Identification of Shared Data Structures 25
6.6 Identification of Modules Sensitive to Their Rate of Input 26
6.7 Identification of Execution—Priority Sensi tive Modules 26
6.8 Identification of Abstractions 26

7. PERFORMANCE ATTRIBUTES 27

8. CRITICAL SECTIONS OF A PROGRAM 29

9. RIPPLE EFFECT OF PERFORMANC E CHANGE 31

10. MAINTENANCE TECHNIQUE FOR PR EDICTING WHICH PERFORMANCE
REQUIREMENTS ARE AFFECTED BY THE MAINTENANCE ACTIVITY 31

10.1 The General Framework of the Maintenance Technique 32

I

L.~
—

.

— - - ______________

~~

. —

~~~~ 

.-.~~o. .. .4

— ___ ______- ____



10.2 Applicat ion of the Maintenance Techni que to the Retest ing
Phase of the Maintenance Process 35

11. FUT UR E RESEARCH AND CONC LUSION 38

11.1 Dynamic Analysis 3811.2  F igure—of—Mer i t  for  Program Main ta inabi l i ty  from a
Performance Perspective 3911.3 App l i ca tio n to Desig n Phase 3911.4 Conclusions 41

REFERENCES 42

-— 

ii 

-

~~~~ 

-

~~

--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~ 

- ——

--

LI ST OF FIGURES

Page

Figure 1. A grap h model of performa nc e requirements of a
simp le program expressed in terms of an R—Ne t 7

2. An invocation graph from Module B for i l lus t ra t ing
a Per fo rmance Depe ndency Relat ionship 9

3. An R—net of a simp le program for illustrating a
Perf orma nce I n te rdepe nde ncy Relat ionship betw een
Modules A and B 10

4. (a) The R— n et of a simple program and (b) the
invocation graph from Module B for i l lus t ra t ing that
the Performa nc e Dependency Relationships are not
transitive 11

5. An invocation graph from Module B for illustrating
a Pure Performance Dependency Relationship between
Module A and Module B 12

6. (a) The R—net of a simple program , (b) the invoca-
tion graph from Module A , and (c) the invocation
graph from Module B for illustrating a Pure Perform-
ance Interdependency Relationship between Modules
A and B 13

7. The R—net of a simple program for illustrating
shared resources mechanism 16

8. An example of the interprocess communication
mechanism between two modules 17

9. The R—ne t of a simp le program for illustra ting the
identification of modules executable in parallel.... 21

10. R—net of a larger and more complex program 23

11. Relationship of Performance Attributes and the
Mechanisms for Propagation of Performanc e Changes . . . 28

12. Relationship of performance a t t r ibu tes (P . A .) ,
cr i t ical sections (C . S .) and the mechanisms for
propagation of performanc e changes in a program 30

iii

~~~~~ ~~~~~~~~ —~~~~~~

_________ 
__________._.____*—~~~~~



-~~~~~~ - - - - - --- .-

~~~

-— --

~~ 7
13. Relat ionshi p o f performance requirements (P . R .) ,

pe rformance a t t r ibu tes (P . A .) , cr i t i ca l sections
(C . S .) , a nd the mechanisms for propagation of
performance changes in a program 33

14. The framework of a maintenance technique in predict-
ing which performance requirements are affected by
the maintenance activity 36

15. A pp lication of the maintenance technique in the pre—
dic tion of performance requirements affected by the
maintenance activity and in the retesting phase 37

16. The direc ted graph of resource utilization of a
process 40

PERFORMANCE CONSIDERATIONS IN THE MAINTE NANCE PHASE

OF LARGE-SCAL E SOFTWAR E SYSTEMS

1. INTRODUCTION

The amount of the maintenance effort in the life cycle of large—scale
sof tware has been large and con t in uously increasing. It has been estimated
that some 75% of data processing personne l are alread y taken up by mainte-
nance [1]. Program main tenance includes error corrections , enhancements of
capabili ty, deletion of obsolete capabilities and changes in mission require-
ments (2 ,3,4]. Optimization is also a formof ma intenance requiring the mod i-
fication of code wtthin individual modules , or poss ibl y the structure of the
comp lete system in order to improve its efficiency 15] .

The maintainability of a system is a measure ot cli .~ ease of makiag modi-
fications to the system . In software , the e f f e c t of a mod i f i ca ti on may n ot
be local to the loca t ion of the modif ica tion , but may also affect other
por tions of the system . There is a ripp le effect from the location of the
modification to the other parts of the system tha t are affected by the
modification . One aspect of this ripp le e f f e c t is log ical or func t ional in
nature . It involves the characterization of the system in terms of assump—
tions and decisions of program modules . When a change in a decision of a
module is made , all of the modules in the system that have the m o d i f i c . de-
cision as an assumption are affected . Modifications on these modules are
usually necessary and these modifications may affect the decisions made in
these modules . These modifications in the decisions will in turn affect
other modules using them as assumptions . This ripp le effec t goes on until
no decision is a f f ec t ed .

Another aspect of this ripp le ef fec t concerns the performance of the
system . During sof tware maintenance , it is possible to pe r fo rm a modif ica-
tion to the system , investigate its logical ripp le e f f e c t , and loca te the
other modules in the system affected by the modification. After all the
logical correc tions have been made to the system , the maintenance personne l
may conclude tha t they have restored the system to its previous leve l of
functional correctness . The performance of the system , however , may have
been altered as a direct result of this maintenance activity . Since a
large—scale program usually has both functional and performance requ irements ,
the net result of the maintenance effort may be satisfactory to the func—
tional requirements, but not to some performance requirements .

In many large—scale systems , the violation of a performance requirement
is equivalen t to a system error and , thus , requires f u r ther corre ct .ivc
action 16] . Consequently, it is important it’. the maintenance process to
fully understand the potential effect of a modification to the system in
terms of the performance of the parts of the system directly involved I n
the modification as well as those that are affected indirectly . The change
in performance of these parts may then have an impact on the performance of
other parts of the system . This ripp le e f f e c t in terms of pe r fo r mance 1

continues unt ii the performance of no other p a r t ot t h e system Is aft cc ted

rh o ‘a i n t en a n c e p r .,ss cm , thus . he Impr o v e d it main t enance personne l
ar e ’ su p p i t e d w i t h jut orma t ion enabling t h e m to I n c o rpora t e per formance c on —
s l , i o r a t i ’n s in their cri t eri a for selecting the t v p t ’ and location of soft—
w .m ro mod I i cat I ens to be made . Tb is tnt e rn~m t ion is p r ev Ided by t h e d e v e l op —

mont o a m.~ m t e n .mn e ..’ t c ohn I quo or prod Ic ii ug which p e r fo rmanc e r equ l remon ts
i n t h e system may he a f t e e t e d by a posed mod l icat Ion . The prediction of

~~~ic i i  p e r f o r m a n ce  r e q u i r e m e n t s  ma~ h~ a t  t oo t ed by a soft wti -e rnodi t i c a t i o n  is
a J i t f I cult ask . [)ue to the size and comp I cxi v ~f design of many large—
so a I ~ ‘ sv st  e:rs • ma m t  tna no e c i a  ge ’s can  c a u se  re percuss Ions almost anywhere’
throughout t h e  sy s t e m  1 1 , ~H . Thus , t h e  s i g n i t  I c a n e e ’ of t h i s  t e c h n i q u e  l ies
in Its d i it t v  to  t r a c e  he r ep er c t~~s i ens  a nd p r e d i c t  w h i c h  pe r formance
r e ~u i r eme ’n ts ma v he at feC ted

lii this r e p o r t  • t h e  d e v e l o p m e n t  ot a :s,m In tenance t e c h n i que for  p r e d i c t i n g
which pt’rform.mnce r e q u i r e m e n t s  In the sy s t e m  niav be a f f e c t e d  by a proposed
sot  t w a r o  mod l i  teat Ion w i l l  he cut  l i n e d  . M e c h an i s m s  f o r  the pr op agat i  on of
pertor ma nco c h a n g e s ,  performanc e attr ihut es ~ and c r i t i c al  so f tware  see t ions
v iM.  he dot tried and their relati on ship witl ~ p e r f o rmance requirements w i l l
he an, u l v : e J .  rhese’ r e s u lt s  w i l l  f orm t h e  h m s i ~ for  the develop ment  of the
maintenanc e techniqu e’.

t h e  t e c h n i q ue  o u t l i n e d  in  t h i s  report Is applicable to a l l  typ e s of
Ia r~ . —sc ,m lo svs t eins possessing pert orm ance ’ r e ’~ u i rements Inc  l ud ln g  m u l t i —
process jug system s . l’he s i g n i f i c a n c e ’ of the  t echnique  is i t s  c o n t r i b u t i o n

a sof twa re eng ineer  trig approach t o  ma m t  enance. it  provides main tenance
p er s on n e l  w i t h  c r i t e r i a  for s e l e c t in g  the  proper s o f t w a r e  m o d i f i c a t i o n s  among
the available a l t e r n a t i v e s .  g i nc e  the per fo rmance  requirements  which may
be . m f i e c t t ’d h~- e a c h  p rop osed  s o f t w a r e ’ mod ificat ton can be Identified using
th is technique . it is pi ’cd’ah le that t h e  m a i n t e n a n c e  personne l w i l l  select
mod If I cat i o ns  a f f e c t i n g  t h e  f e w e s t  number of p erformanc e requi rements  . If
i t  is decid e d t h a t  some perf ormanc e r e q u i r e m e n t s  are very close to being
vio la ted , tht’ m a i n t en a n c e  personne l maY select the so f tware  m o d i f i c a t i o n s
among avail able a I t  er n a  t ivos that do not a f f e c t  these requi rements  in order
t o  av o i d  f u r t h e r  maintenance necessary to r ep a i r  any v i o l a t i o n s  to these
p e r f o r m a n c e  r e q u i r e m e n t s .  rhu s , in  t h i s  repor t we w i l l  show how the ma in te—
ia n ce  t e c h n i que is ~ies i gned to comp lement the log ica l  r ipp l e — e f f e c t  mainte-

n ance too l  in the p r e d i c t i o n  of the  repercuss ions  generated by sof tware
mod if ica t ions Jun ng the m .mi tit e nan e o  p ha se .

I n this report we will a iso i l l u s t r a t e  how the techni que can hel p retest
the s\’s te m w h e t h e r  i t s  p e r f o r m a nce r equ i r eme nt s  have been v io l a t ed  by the
ma i a tenance e! tort a t  t or t h e ’ ma m t  e ’nauce  changes have been implemented.  The
m a i n t en a n c e  t o c hn i  quo ana lv z e s  t h e  ‘r eposed changes  In respect to the per—

o rae ne~ ot  the en t i r e  sv st  em, and not j u s t  t h e  loe , i  1 areas involved in the
mod I f  l ea  t 1mm . I t  can then  d e t e r m i n e  he pe r formanc e  requirements  a f fec ted
by t h e  mat n t e n .m n c t ’ e h a n ge  . It should be noted t h a t  du r ing  the eva lua t ion
of i Itorn i t lye nod i I b a  t i o n s  • t h e  maintenanc e t e ch n i q u e  was used to pred let
worst— ease c f  f o o t  s on p e r f o r m a n c e  of s of t w a r e  m o d i f i c a t i o n s  . Now that  the

n o d i f i c a t i e n  has been imp lemented . t h e  m alnte ’n .mn ce technique can substantial—
Iv ret tao I t  a .mn .t I vs Is and dote rm i itt’ m o r e  acc  nr a  t e l  v the per fortna nce requ i re—



ments affected by the maintenance modifications . This permits the identifi-
cation of which portions of tu system mus t be retested to insure that these
performance requirements have not been violated . Since the maintenance
effort must not violate any f unc t iona l or performance req u iremen ts , this
maintenance technique provides a significant contribution in determining the
scale of retesting effort needed to insure that these requirements have not
been violated .

Throughou t this repor t , we will  iden t if y the areas where more research
is needed . In particular , we plan to have an additiona l report .

1. The second report will cover the following topics: j
a. Formal description of the algor ithms for  iden tif ying the eight

mechanisms for  the propaga tion of performance changes in a large—
scale program . Also inc luded will be proofs of the correctness
of these al gorithms as well as illustrative examples.

b. Formal description of the algori thms for  iden tif ying the cniti-
k cal software sections of a large—scale program.

c. Formal description of the algorithms for identifying performance
dependency re la t ionships in a large—scale program .

d. Formal descrip tion of the algor ithms composing the techni que for
predic t ing performance requ iremen ts a f f e c ted by maintenance
activity. Also included will be proofs of the correctness of
these algorithms .

e. Demonstration of the maintenance technique during the main tenance
phase of a typical p rogr am .

2. P ERFORMANCE CONSIDERATIONS IN SOFTWARE LIFE CYCLE

Recent publications are beginning to stress the importance of performance
con~~iderations in the design phase of software development. Previnus work in
sof.tware specifications techniques has centered upon only the func tional
characteristics of software systems [9.lOJ . Performance considerations were
on l y considered after the system was designed and implemented . Yet , fai lure
to include performance specifications as part of the initial development
p~rocess is one of the factors leading to significant problems during the
development phase. This failure is a consequence of the “structured program—
sting period” during which the prevalent attitude was that performance should
only be dealt with after the system was built [11].

Performance ana lysis is now being introduced as an important and necessary
tool for choosing which design among several alternatives should b~ used
during the design stage. It is possible to conceive that more than one of
the designs would satisfy the functional requirements of a problem , but the
performance characteristics of the different designs will probably vary . In
this case , it is the performance considerations that will determine which of
the designs should be selected [121.

3

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,- ,--- ~~~~~~~~~~~~~~~~ 


Pe rforma nce considerations are also often in conflict with modularity
cons i H”r ition s . In real—time systems , it is often critical to have the
appr opriate modules in m o m o r ; when they are needed . This may conflict with
t h e t .~ch nique of designing a system to be tunctionall y and logically modu-
lar (13(. Furthermore , performanc e requirements will sometimes impose
. t d d i t i o n a l constraints on the structure of the program so that princip les
in structured program m i n g can r .ot be followed . For examp le , storage limita-
t ions ari d access time requi rement s ma r’ dictate that onl y certain data
struct ire ’s should be used . Th is will , however , violate Dijkstra ’s idea of
postponing the choice ot data structure to the last minute. Overall ,
program design and testing considerations often dictate modularity properties
that often conf l ict with properties necessary for high performance (13).
Th is necessitates a tradeoff. The entire problem is summarized eloquently
by br anscomb when he sai d , “The high cos t of software has its roots in the
lack of methodology for perf orman ce spec i f ica tion and eval ua tion ” (141.

A current trend in software engineering is , thus , toward the inclusion r~f
per formance considerations in the evaluation of alternative designs in the
des i gn phase. Alth ough current research results in this area are promising,
there still remains a vast amoun t of work to be done 11 1 ,12 ,15 ,16). Some
of r h ~ prel iminary results in this area that pertain to the study of perform-
ance considerations at the maintenance phas e of the sof tware life cycle wi l l
be not ed as t hey are encountered . Performance considerations at the design
phase , however , differ from those in the maintenance phase. They do share a
common objective of identifying the best proposed alternative implementation
in terms of performance . However , d~ r ing the maintenance phase , the mainte-
nance personnel must be able to ascertain the ramifications in terms of
performance of proposed changes in order to achieve this objective .

3. LEVEL AT WHICH PERFORMANCE CHANGES DUE TO PROGRAM MAINTENANCE ARE
CONS IDE RED

In order to stud y the potential effect of a modification , it is f i rs t
necessary to establish at what level of system decomposition the performance
changes should be studied . Now the definition of what constitutes performanc e
should be user—oriented because recognition of a change in performance of the
system by a user is dependent upon his performance expectations . A mino r
change in performance may be unnoticed by most users , but the same change may
be catastrophic to others . The ideal level of system decomposition for
stud ying the potential effect of a program modification to performance then
app ears to be the leve l at which pe rformance requirements can be stated and
changes of performance meaningfully interpreted.

The approach to stating performance requirements has historically been
in terms of functions and subfunctions as demonstrated in many military
standards. This approach does have some difficulties when applied to large—
scale software. First , it is often difficult to trace the processing
required for an input message . Since functions may span subsystems and are
often interrelated , it is also difficult to develop acceptance tests [ii].

Another obvious way of stating performance requirements is in terms of
the operations that each software module performs . The disadvantage of this

4

_ _ — ~

app roach is tha t the performance requirements specified in this way are
typically oriented more towards the implementation techniques of the module
rather than the user ’s requirements. In large—scale systems , some of the
module performance req uiremen ts may be incompa tib le with others in the
system . This can result in failure during the integration phase [18].

The current approach in software engineering to the statement of per-
formance requiremen ts is in terms of f lows through the system [17—22 1.
The system is examined from the perspective of stimuli and responses . Each
flow originates with a stimulus and continues to the ultimate response.
Along each flow, performance requirements are stated to specify how well the
functional requirements are met . The performance requirements are defined
in terms of timing, response time , accuracy, frequency of occurrence , etc.
for each stimulus—response pair. This enables simp l if ied testing proced ures
for performance requirements stated in terms of specific paths and their
associated data .

These performance requirements can be synthesized to form a Requirement
Ne twork (R—Ne t) composed exac tly of the requirement paths [191. An R—Ne t
consists o f :

(1) A set of nodes representing processing steps called “Al phas .”

(2) A set of nodes identifying processing conditions , called “OR ”
nodes , associated with a selector variab le .

(3) A set of “AND” nodes iden tif ying “don ’t care” sequences of Aiphas
which could be perfo rmed in any sequence or even in parallel .

(4) A set of in te rfa ce nodes whe re exte rnal messages ar e received
or t ransmit ted.

(5) A set of initial and termina l nodes .

1 (6) A Set of arcs joining the nodes in a legal fashion .

(7) A set of events on R—Ne t paths , each of which enables an R—Ne t to
perform processing . The arrival of a message at an interface may
also constitute an event. [

(8) A set o f validation points used to uniquely identif y pa ths , and to
specify where data are to be extracted to test the process.

The R—Net is a synthesis of a set of paths . Each Alpha is associated
with two subsets of data identifiers , represen ting da ta inpu t to and ou tpu t
from the processing step. The link between the functional and performance
requiremen ts is achieved through the validation points . Each validation
point is associated with a set of data identifiers representing data to be
collected . If a test for a performance requirement is written only in
terms of those dat.” identifiers , then the requirement is testable I 19) .

A collec tion of R—Nets containing performance requirements for each pa th

5

_ _ _ _ _ - - .--

is called a Graph Model of Performance Requirements (GMPR) [19]. An example
of a GMPR is shown in Figure 1. It should be noted that an R—Net does not
necessarily describe paths through software modules . They also do not
necessarily deal with the implementation of the software. Instead , they
describe a sequence of required processes . Each of these processes may be
imp lemented in a number of software modules , and some software modules may
be imp lemented in several processes [181.

The deve lopment of the R—Nets associated with a system is a top—down
process. The designer mus t first specify the responses in terms of a few
processes stating the processing necessary at a high level. Later , each of
these processes is in tu rn expanded into R— Nets . The refinement process
cont inues unt i l any fu r ther refinement would be machine or operating system
dependent . The success of this approach to specifying the requirements of
large—scale software has been demonstrated on systems as complex as the
Ballistic Missile Defense systems [17 ,18].

Since the current trend in stating performance requirements is at the
R—Net processing level, the potential effect of a software modification will
be analyzed by the maintenance technique outlined in this report in terms of
performance changes at this level. This level is also chosen because the
recent development of requirement statement languages for expressing R—Nets
provides a convenient interface with the maintenance technique [17,18,19).
Thus , the maintenance technique outlined in this report is designed to aid
the maintenance effort of systems built with current design techniques as
well as those systems which have been constructed utilizing previous design
techniques. The maintenance technique is capable of handling both newly
designed software and older existing software because it operates upon
performance attributes which are decomposed from the performance requirement’s.
When performance requirements are stated at the R—Net level, this decomposi —

don is simp ler than at other levels . As requirement statement languages
continue to develop, it appears feasible that this decomposition may even b e
accomplished automatically. The performance requirements of existing soft-~
ware systems , which are not stated at the R—Ne t level can be decomposed
into pe rforma nce a t t r ibutes , but this process may be more d i f f i cu l t to
automate. Thus , although the maintenance technique is flexible enough to
support the maintenance activity of all software systems, the ideal situation
occurs when performance requirements are stated at the R—Net level.

A key objective in the maintenance phase is the identification of modules
whose performance may change as a consequence of a software modification .
These changes can then be placed in proper perspective by interpreting their
effect on the performance requirements .

4. PERFO RMANCE DEPENDENCY RELATIONS

The identification of modules whose performance may change as a conse-
quence of software modifications is a complex task. The identification is
complicated by the fact that performance dependencies often exist among
modules which are otherwise functionally and logically independent . A
relation ‘

~~~~
“ can be defined over the set of modules in the system as fo llows :

6

- -

~ 

~~~~~~ ‘~ ~~~~~— ‘- - -~~~~ - . .~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~


__ -—_ _ _ _ _ _ _ _ _ _ _ _ _

IN PUT
RADAR

CONTACT

vl

VERIFY
CONT ACT

ERRONEOUS

CONFI RIlED
CONTACT V4

IDENTIFY

&

DETE RMINE REPORT
AIRCRAFT LOCATION FALSE

CONTACT

&

NO THREAT POTENTIAL THREAT

~~~~ V2 V3

~~~~~~~~ T T

PATH P1 (V1-V4) Acknowl edge false contact within 100 ms.

PATH P2 (V1-V3) Order intercept mission vii h in 500 ms.

Figure 1. A graph model of perfor mance requirement s of a simple
program expressed in terms of an R-Net .

7

Let S — fa l l modules in the system) and A , B , C cS ,

Then , A”.’B if and only if a change in module A can have an effect on the
performance of module B. A performance dependency relationship (PDR) is
then defined between module A and module B. If the relation is symmetric ,
i.e. A’~B and W~A , a performance interdependency relationship (PIR) is de—
fined to exist between modules A and B. Figure 2 consists of an invocation
grap h from module B. The invocation graph is defined such that each node
represents a module and a directed line from one node to another indicates
that the pa rent node invokes the subordinate node. Thus , in Figure 2 , we
have module B invoking module A. Therefore , a PDR exists between modules
A and B since a change in module A can affect the performance of module B.
Figure 3 illustrates a PIR between modules A and B. In the figure, the
graph illustrates that module A and module B can be executed in parallel.
If modules A and B must share common resources, it is quite likely that a
change in either module may affect resource utilization and , consequently,
the performance of the other module.

Although it is possible to have A”.’B and B”~C, the transitive property is
not necessarily true for this relation and , consequently, it is false to
conclude that A~C. For example, assume in Figure 4 that module B is sending
a message to module C. Thus, B\’C since a change in the time module B sends
the message can affect the performance of module C. Now, the invocation
grap h for module B shows that module B calls module A. Thus, k~B since a
change in module A can a f fec t the performance of module B. We now have A”~’B
and B’vC. However, if module B calls module A after module B transmits the
message to module C, A~C since a change in module A cannot affect the
performance of module C.

A pure performance dependency relation (PPDR) can be defined between
module A and module B if there exists a change in performance of module A
which is not the result of a modification to module A that can have an
effect on the performance of module B. This relationship is denoted by Ms’3.
Figure 5 illustrates a PPDR between module A and module B. In the example in
Figure 5, assume module X is modified with a resulting change in its per-
formance . The change in performance in module X will ripp le to module A ,
thus , altering its performance , This in turn will affect module B indicating
a PPDR between A and B since module A has not been modified . A pure

~~~~formance interdependency relation (PPIR) can analogously be defined to exist
between module A and module B if the pure relation is symmetric , i .e. ,  A~ B
and B~~ . Figure 6 illustrates a PPIR between module A and module B. In the
figure , the graph illustrates that modules A and B can be executed in paral-
lel . If modules A and B must share some common resources , it is quite likely
that a performanc e change in either module may af fec t resource uti l ization
and , consequently, the performanc e of the other module . If called module X
within module A uti l izes a data abstraction , a change in the implementation
of the abstraction may a f f ec t  the performanc e of X. This in turn may a f f ec t
the performance of A. Thus , £~~B. In an identical manner it can be shown
that Bm~~. Therefore , a PPIR exists between module A and module B.

Two modules are defined to be performance independent (Pt) if there does

8 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _


F

Figure 2. An invocation graph from Module B for illustrating a
Performance Dependency Relationship.

9

- . .‘- ‘—‘ ,- - _ ___


~~~UTPUT>

Figu rt ’ 3 . An R — n e t  of ,i simp le program for illustrating a P e r f o rma nce
Lnterdependt’nc y R e ’at i o n sh ip  betwee n Modules  A and B.

L.



T

-
ii 

H’
~~~~TPtrr ~~~

(a)

(b)

Figure 4 . (a) The R-Net of a s imp le p rogram and (b) the
invocat ion grap h f rom Module B for i l l us t r a t i n g that
the Performance Depende ncy Relationships are not
transitive .

11

~~~~~~~~~~~~~



L
Figure 5. An invocation graph from module B for illust rating aPure Performance Dependency Relationsh ip between

Module A and Modu le B.

12

~~~~~~~~~~~ ~~~~~~~~~~
-‘ _ __ _ _ _ _ _ _

A l I B I

I & —

c7

(a)

(b) (c)

Figure 6. (a) The R-Net of a simple program , (b) the invocation
grap h from Module A, and (c’ the invocation graph
from Module B for illustrating a Pure Performance
Interdependency Rela tionship between modules A and B.

_ _ _ _ _ _ _ ~~~~

not exist a PDR or PPDR between them . A system is more maintainable from a
performance perspective if the degree of PDR and PPDR among the modules of
the system is small , i.e. most of the modules exhibit performance independ-
ency . The first task in evaluating the maintainability of a large—scale
software system is, thus, the identification of the PDR and PPDR that exist
among modules . This requires an analysis of the mechanisms in existence
in a large—scale software system by which changes in performance as a conse-
quence of a software modification are propagated throughout the system .

5 . MECHANI SMS FOR TH E PROPAGATI ON OF PERFORMANCE CHANGES

It is obvious that when a logical or functional error is discovered in
the software , the scope of effect of this error can affect other modules .
Analogously , when a performance change is made, the scope of effect of the
change can be determined by examining the mechanisms by which this change
can affect other modules . In this section , we will identify eight mechanisms
which may exist in large—scale systems by which changes in performance as a
consequence of a software modification are propagated throughout the system .

5.1 PartlIel Execut ion

The first mechanism for the propagation of performance changes involves
a modification during maintenance which results in a loss of parallel execu-
tion capability. In the maintenance phase it is possible to intr,duce
software modifications to a module which can destroy its ability to be
e’xecuted with other modules in parallel. For example , if the module must be
modified so as to store an intermediate result in a shared data structure ,
then it may no longer be able to execute in parallel with modules also
utilhing the data structure . This condition must be apparent to maintenance
personne l to prevent a modification having this effect from going unnoticed .
If it is not detected , it can lead to a violation of the functional require-
ments of the system .

Althoug h a modification to a module may be recognized as destroying its
abilit y to be executed in parallel with other modules , it may still be
necessary to proceed with the modification anyway . This may be necessary
when the functiona l requirements of the system have changed , and the modifi-
cation is required to satisfy the new functional requirements. The mainte-
nance personnel must then be aware of the change in performance which will
result from the loss of the parallelism . Major changes in performance may
result due to execution delays and contention for resources previously
alleviated through the parallel execution. Thus, modifications affecting
parallel execution of modules can lead to violations of performance require—
ments.

5.2 Shared Resources

Another mechanism for the propagation of performance changes is con—
tent ion for resources among modules . When modules are forced to share
resources , the t ime when each module requests and releases common resources
are important performanc e parameters . In a multiprogramming environment ,
performance degradation may be experienced by modules whose execution is

14

_ _ _ _ _ ~~~~~~~

being affected by the denial of requested resources which are currently
ded icated to other modules. The problem is intensified when the modules can
execute in parallel. For example, consider the R—Net of a simple program in
Figure 7. In the graph , assume that modules B and C must share a common
resource. Then, a modification to the performance of either could affect
the utilization of the common resource and , thus , the performance of the
other. This illustrates a FIR between modules B and C since a change in
module B can affect the performance of module C and a change in module C can
affect the performance of module B. Thus, software modifications producing
performance changes in the time resources are utilized can have detrimental
effects on the performance of modules that must also share the resources .

5.3 Interprocess Communication

Another mechanism for the propagation of performance changes involves
communication among the modules in the system .

When one module must send a message to another module , the performance
of the module receiving the message is dependent upon when the message is
actually received . Thus, modifications to the module sending the message
that alter the time when the message is sent can affec t the performance
of the module designated to receive the message . This is another example of
a PDR between the communicating modules . Since the key dynamic attribute
in this environment is the time when the message is sent, it is possib le
for the communicating modules to participate in a PPDR. This situation is
illustrated in the example in Figure 8. In the example, suppose module B
must wait for a message from module A. If module A utilizes a data abstrac-
tion, and the implementation of that abstraction is modified , the time module
A sends the message to module B may be affected . This in turn will affect
the performance of module B. This implies a PPDR between module A and
module B.

5.4 Called Modules

Another mechanism for the propagation of performance changes is the
utilization of called modules in the software. Modifications to modules in
the maintenance phase can be divided into two types . A bounded modification
to a module is a modification which does not alter the performance of the
module . An unbounded modification to a module is a modification which alters
the performance of the module. An unbounded modification to the called
module will affec t the performance of all modules calling it. A bounded
modification will not affect the performance of the other modules calling it.

5.5 Shared Data Structures

Another mechanism for the propagation of performance changes is through
the utilization of shared data structures . In this mechanism, it is assumed
that the implementation of any data abstractions utilized is not modified .
Instead, changes in the contents of the data structures are analyzed in order
to understand how they can affect the performance of other modules . The
modules under investigation will be those utilizing the shared data structure .
The basic dynamic attributes contributing to performance in this area are a

15

—

INPU T

A

&

B C

&

D

E

OUTPUT

Figure 7. The R—net ot a simple program for illustratingshared resources mec hanism .

J
16

V V

C NTE~~ CE
O

COI4IUNI CATION

Figure 8. An example of the interprocess communication mechanism
between t~~ modules.

17

--

~

V -

~

- . -. ~~
—

module ’s storage and retrieva l times for entries in the data structures .
Factors affecting storage and retrieval times vary among the different types
of data structures as well as the algorithms utilized to manipulate these
structures. For examp le, in linked structures the length of the ~ V

• ts can
affec t storage and retrieval times . In general , data structures anu the
algorithms to manipulate them are designed for a particular operational
environment . During software maintenance , however , this environment may be
a l te red . The m o d i f i c a t i o n may lead to sat ura ti on of the da ta struc ture
resuL~1ng in long lists or heavy utilization of overflow areas . This may in
turn reflect upon module storage and retrieva l times of elements to the data
str uLture. The effect could be even mort severe if the data structure
overflowed and data was lost.

I t is , thus , very import ant in the maintenance phase to understand how
a mod ification of a module could affect the contents of shared data struc-
tures . Modifications which affect the quantity of intermediate data stored
mus t be ana lyzed as well as changes to modules which process and ultimately
dele te entries from data structures . For example , consider a queue shared
between module A and module B. Assume module A gener ates da ta and stores
it in the queue , and that module B processes this data and deletes it from
the queue . Then either a modification to module A affecting the rate of
intermed iate data generated , or a modif ication of the processing of the data
in module B can lead to overflow of the queue . The problem is even more
ac ute when the data is perishable , i.e. it must be processed within a
certain period of time . This p roblem is vividly exemp lified in Air Force
c ommand and control systems . Due to the speed with which weapons can inflict
destruction , decision times in command and control systems are very short .
Also , much of the data required for dynamic force management is highly
perishable and mus t be properly sequenced with other time—sensitive data to
permit an accurate and useful picture of the situation !23}. Thus, modifi—
ca t ions to mod u les s h a r i n g co~~-.- - on data struc tures can lead to both per—
form ance and functional requi rements violations .

5.6 Sensitivity to the Rate of Input

Another mechanism fo r the propaga t ion of pe r fo rmance changes involves the
r a t e of input into a process . This change in inpu t f requency is the result
of a changing e n v i r o n m e n t . The resul ting change of input rate to the process
can have major repercussions in terms of i ts func tional and performance re-
quirements . For example , it can lead to satura t ion and possibly overflow of
data structures involved with the processing of the input . The increased
frequency of input arrivals may also lead to interruptions in processing
which can lead to both functional and performance requirement violations .

These are difficult prob lems for maintenance personne l to address . When
the software processing environment is modified resulting in increased rates
of inpu t , the maintenance personne l must evaluate this change in terms of its
impac t on the system processes which must handle the input . Thus, cha nges

4 in the ra te of inpu t to processes are impor tan t and their effect on software
func tiona l and per formance r e q u i r e m e n t s mus t be evaluated .

18

5.7 Execution Priorities

Another mechanism for the propagation of per formance ch anges involves
the execution priority of modules . During the development phase , module
execution priori t ies may have been established to insure correct sequenciflg
or preservation of critical system performance requirements. The priorities
are used to determine the execution order of nodules capable of beginning
execution at the same time . The priorities may also be utilized in the
determination of whether or not a module ’s execution should be pre—empted
for that of a module with a higher priority. During the maintenance phas e,
it is important f o r main tenance personnel to recognize the effect of a
proposed modification in respec t to the existing priorities in the system .
For example , if module A has the ability to interrupt the execution of
module B, then any modification a f f e c t i n g the execution time of moduli~ B
mus t be caref ully anal yzed in order to de term ine if mod ule B can st ill
perform i ts desi gna ted f unct ion bef ore being interrupted . Maintenance
changes involving resetting of priorities or the addition of new priorities
are even more difficult to assess . Modification of existing priorities can
create conflic ts in the system such as resource con ten t ion tha t can lead to
performance degradation. Thus, prior ity consider at ions are impor tan t in the
preservation of the performance requirements of the system .

5.8 Abstractions

Another mechanism for the propagat ion of per formance changes is the
utilization of abstractions in the software . The use of abstractions is a
popular design tool and adds to the maintainability of the system by hiding
design deci5ions . From the performance perspective of maintainabilit y ,
however , abstractions are “trojan horses .” This is because a change in the
implementation of the abstraction will very likely affect the performanc e
of the abs trac tion , and , thus , the performance of all modules utilizing
the abstraction. For example, a data abstraction may have an associated
retrieval time for finding a particular entry . If the data structure is
reorganized and different algorithms are imp lemented , the associated
retrieval time may vary . In a module that is heavily utilizing the abstrac—
t ion , the change in performance may be intolerab le . This is a classic
example of a case where a modifica tion to software during ma intenance dOLS
not produce any funct ional or logical changes , but it does resu l t in
performance changes .

6. IDENTIFICATION OF PERFORMANCE CHANGE PROPAGATION MECHANISMS IN SOF11~A~~
SYSTEMS

The next task that must be comp leted is to f i n d whe the r the eight
mechanisms discussed in the last section may ex i s t in a so f twa re sy s tem
under study. This involves the deve lopment of algorithms for the deter-
mination of which mechanisms are in effect and which modules are w ith in tht~ir
inf luence . With this in format ion avai lable , i t wi ll be possible to d e t e r m i n e
what performance dependency relationships exist in the sof twar e system.
This is the informat ion which is v i t a l ly needed b y main tenance personnel in
the evaluation of the impact of proposed software changes on performanc e
requirements .

19

- ---- - - V ~~~~~--~~~~

The i~lciit i fic it ion ot most of the p e r f o r m a n c e p r o p a g a t i o n mechanis ms in
a p r o g r a m c an begin as earl y as the design sta ge . At th is earl y s tage , the
mi l o r input i n t o the a l go r i t h m s to i d e n t i f y the exis tence of these mechanisms
in ~i p r o g r a m c o n s i s t s of a set of R—Nets and invocat ion graphs for the
program is well is semi’ designer supplied informa t ion such as execution
p r i o r i t t e ~V . it is then possible to p e r f o r m an ana lysis of t he program to
d e t e r m i n e which mechanisms tre present and , consequent l y , where performance
dep endenc les exi st . A complete stat Ic ana lys is of the imp lemented p rogram
I s i e c e s s i rv b r a more p r e c i s e p r e d i c t i o n of pe r fo r ma nce chan ges r esul t ing
t r om softwa re’ mo dIfication .

In t h i s sec t ion , a l gorithms for the determ inat ion of which mecha n isms ar e
in i t f e d in a l a r g e — s c a l e ’ pr ogram w i l l be b r i e f l y discussed . In another
r ep or t , we pl an t o t o r m a l l v descr ibe each of these al gori thms wi th accompany-
ing examp les and p r o o f s of the correctness of the algor ithms .

t’ .l I d e n t i f i c a t i o n ot Modules Executable in Pa r a l l e l

The I i r st m e c h a n i s m fo r the propagation of p e r f o rmanc e changes to be
examined in a software’ system is a change involving a loss of pa r a l l e l
e x i d u t ion c a p a b i l i t y . D u r i n g the m a i n t e n a n c e process , programmers must
c o n s t a n t lv he aware of w h i c h modules can he executed in p a r a l l e l . They
m u s t then he c an t b u s about m o d i f i c a t ions to these modules that can destroy
their a b i l i t y to execute In parallel. If the ability to execute In pa ral lel
must be lost in or d er to in c or p o r a t e some type of m o d i f i c a t i o n , then it is
important to determine the p e r f o r m a n c e changes tha t w i l l resul t in other
modules in the system . The major performanc e change w i l l be experienced
in the process In which the module was executed in p a r a l l e l . The p r imary
i t t e c t will he an inc rease in e x e c u t i o n t ime as a consequence of the lost
p arallel i sm . The de lay can he considerable if the modified module mus t
wait t o r resources that were p rev ious ly a v a i l a b l e at i t s ear l ier execution
tim e’. Thus , information regarding changes in performance as a consequence
ot lost p arall elism must hi. avai lab le to maintenance personne l in order that
t h ey can fti l ly i~ certain the implications of proposed modifications . This
i n f o r m a t i o n is dependent upon the identification o f which modules may be
executed In p ara llel. The determination of which modules can be executed in
p a r a l l e l is a decision made d u r i n g the design phase of the sy s te m. This
d e c i s i o n must he reflected in e i t h e r the so f twa re imp lementa t ion or i ts
V l e c o m p a ny lng d o c u m e n t a t i o n . In e i t h e r ca se , it can be i l l u s t rated through
the use of R—Nets . Since the identification of which modules may execute
in parallel is an important step in many of the algorithms , a con~ on
l 1 ~ V ot i thm will be briefl y discussed for accomplishing this objective .

[lie identification of which modules may be execut ed in pa r al le l b ased
upon the information in an R—N et is easy in a s m a l l program. For exa mp le ,
i i i t h e p rogr am Illustr ated in Figure 9, i t is obviou s that modules B and C ,
C and D, and II and I a r e the onl y modu les which may be executed in pa ra l l e l .
A c o n ven i e n t n o t a t i o n f o r d e s c r i b in g which modules may be executed in paral-
le l is to e n c l o s e those modules tha t may be executed in para l le l w i th in
pa ren theses . For e xamp le, (A , B) de notes tha t modules A and B may be executed
I n p a r a l l e l . The same n o t a t i o n c a n be m o d i f i e d when on ly a s i ng le mod ul e
En a s e t m i v he execu ted in p a r i l ii’ 1 w i t h a s i n g le module in another se t .

20

—~~~~~~~ V ~~~~~~~~~~ - ~V

<tNPtJ~~~
e

<~UTPÜ~~~

Figure 9. The R—net of a simple program for illustrating the
ident i f icat ion of modules executable in parallel .

21

l i e m d i v i l u a I modules ar . then replaced by the sets of which they belong
i n thu notation. For t X am i) i& , (~ A ,~~}, { C ,D }) represents tha t e i ther module
.\ or B nay be executed in parallel with e i the r module C or D. The no ta t ion
Ice r the examp le In Figure 9 would then be : {(fB ,D}C) , (H , I) } .

The i d e n t i f i c a t i o n of which modules may be executed In pa ra l le l based
upon the R—Net graphs becomes more d i f f i c u l t as the comp lexi ty and size
ot the pro~,cam I n c r e a s e s . In l a rg e r and more complex programs , it is also
i m p o r t a n t to d e t e r m i n e the s i t s c o n s i s t i n g of a l l modules tha t can be
e x e c u t e d in p a r a l le l a t the same t ime . These sets can be defined as
I~~

r 1 l 1
~~V 1 execution sets. An e x a m p l e of a large r and more complex system is

illustrated in F i g u r e 10. One examp le of a p a r a l l e l execut ion set f rom
t h i s e xamp le is (E,F,C,1 ,J } s l U c e I t Is possible for each of the modules in
the set to be e xecu ted in p a r a l l e l at the same t ime . Parallel execution
se t s p l a y an impo r t a n t ro le in the resource con tent ion problem , since i t Is
necessary to d et e r m i n e how many modules are competing for the fixed number
of a v a i a l e resources . Al though the modules in para l le l execut ion sets
may se ldom ac tuall y be executed s imul t aneous ly in the system due to thei r
curre nt relative execution start times , the po ten tial for thei r simul taneous
e x ec ution exists. Afte r a period of operation and maintenance , it is
possible tha t the modules in the para l le l execut ion sets could be executed
simultaneously and , t h e r e f o r e , t h i s cons ide ra t i on should remain a f ac to r
in determining the effect of s o f t w a r e m o d i f i c a t i o ns .

W. wou ld l i k e now to b r i e f ly d i scuss an a lgor i thm to ide n t i f y for
e a c h module of a program the set of modules that may be executed w i t h i t
in paralle l in the program. From these results , it wi l l then be possible
t o f i n d t he p a r a l l e l execu t ion sets in the program. The major input to the
a lgorlthm c onsists ct an R—Net grap h for the program. The graph should be
I t the leve l of abstraction necessary to represent the program at the
module level.

The first step of the al gor ithm is the Identification of parallel
control nodes (PCNs). A PCN is def ined as an “AND ” node in the R—Net wi th
an out—degree greater than one , i.e. the PCNs signa l the beg i n n ing of
parall el execution . Associated w i t h each PCN in the graph , there is at least
one “AN t)” node for synchronizing the recoithination of control flows eminating
t rem the I’CN . The i d e n t i f i c a t i o n of the associated “AND ” nodes for each
PCN is accomp lished b y examin ing the poi nts of i n t e r sec t ion of the control

lows em in a t i n g f r o m th e PCN .

l’ht’ next task to be per formed for each module is the i d e n t i f i c a t i o n of
w h i c h contr o l f l ows pass throug h i t . All p redecessor P~ N nodes on these
c e n i t r o l t le ,w s can the n be i d e n t i f i e d . The associated “AND ” nodes ca n then
he I d e ntified. Those PCNs w i t h “AND ” nodes which a r e pr edecessors of the
mc.di i l e unde r investigation are e l iminated . The set of modules tha t can be
executed in para llel with the module under considera t ion is then formed by
adding to the set all modu les on c o n t r o l f lows emina t ing f rom the remaining
l’CNs and ending with the cor respond ing “AND ” nodes on the con t ro l flow of
the ’ m o d u l e t i n d e r c o n s i d e r a t i o n .

. \t t e r e t ch module in the ’ system has had i ts set of modules tha t can be

INPUT

A

&

B C D

& &

E F C H I J

& & &

L M &

& K

N

&

0

OUTPUT

Figure 10. R-net of a larger and more complex program.

23

V ~~~~~~~~~~~~~ ‘~~~~~V_~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

executed In parallel with it identified , the parallel execution sets can
then be formed . These sets are easy to create. The first step is the
se lection of a module and its set of modules that can be executed in
pa r a l l e l w i t h i t . At this poin t , there are at least two modules tha t can
be executed simultaneous ly . Next, a module is selec ted wi thin the set of
parallel executable modules . Its corresponding set of parallel executable
modules is then intersected with the remaining modules in the set to
de te rmine if there exists th r ee modules that can be executed simultaneously.
l’h. process is iterated for all modules remaining In the set and for all
modules in the system .

‘l’here are seve ral impor tan t parameters per ta in ing to sof tware maintain-
ab ility f r o m a per form ance perspect ive that can be gleaned from the output
of t h is algorithm . For examp le , the degree of parallel influence of a
module can be de f ined as the number of modules which can be executed in
par a l l e l wi th i t . The degree of parallel inf luence can serve as a measure
ot

V
the comp lexity of modification of a module since it measures the number

of potentia l performance changes in modules that can occur as a result of
a m o d i f i c a t i o n .

The above b r i e f l y di scussed al gor i thm to determine the modules that
c a n be executed in parallel is also an important s tep In many of the al-
g o r i t h m s to de te rmine the exis tence of other mechanisms fo r p ropaga t ing
pe r fo rma nc e changes In a program . For example , it is a crucial step in H
I d en t i f y ing the exis tence of the next mechanism.

t~. 2 I d e n t i t ica t ion of Shared Resources

The next mechanism to be examined in a sof tware system is that of
shared resources . The end product of this examination is the identification
‘u per formanc e dependency re lationships among modules as a consequence of
resource sharing . These relationships specify the consequences of a modifi-
ca ti o n to the resou rce u t i l i z a t i o n of a module on the performance of other
modules sharing the resource . The i den t i f i c a t i on of the performance V

dependencies cen te rs upo n the i d e n t i f i c a t i o n of modules sharing a resource
in .i manner such that a modification of the utilization of the resource can
tes u l t in the executio n of some of the modules being blocked until the
r e s o u r ce is a v a i l a b l e . To accomp lish this objective , modules sharing a
resou rce tha t can be executed in paral lel must be ident i f ied by this
a l g o r i t h m . For examp le , if modules A and B mus t share a resource , a mod i fi—
c a t ion of r e s o u r c e u t i l i z a t i o n in module A wil l not have an e f f ec t on module
11 if module A mus t complete execution before module B can begin . Only if
the e x c u t i o n of module A and module B overlap can the modification have
an e f t e c t on performance . The modules sharing common resources and
e x e c u t a b l e in para l le l are then ident i f ied as being part of a performance
interdependenc y relationship since a modification to one of the modules
affe cting its resource utilization can affect the performance of the other
module s.

6 . 3 I d e n t i f i c a t ion of Interpr ocess Communication

The’ ne xt mechanism for the propagation of performance changes to be

24

V

V~~~~~~~ -~~~

identified in the software system Involves interprocess communication.
Interprocess communication is usually established in the design phase of the
software system . These decisions involving Interprocess communication must
be reflected In either the software implementation or its accompanying
documentation. Petri nets are a form of documentation that may be utilized V

in describing communications in the system [24],. Interprocess communication
can also be recognized in the software when synchronization primitives such
as P and V operators or IJAIT and POST macros are utilized . It is then
possible to perform a static analysis of the system to identify the modules
involved in the communication . A performance dependency relationship can
then be established between the modules sending the message and the modules
receiving the message. This information can be saved for later utilization
by maintenance personnel in their determination of the performance ramifi-
cations of proposed software modifications .

6.4 IdentifIcation of Called Modules

The next mechanism in a program for the propagation of performance
changes to be studied is that of called modules . It is very easy to identi—
fy those modules in the system that are called by other modules by perform—
ing a static analysis of the system . Called modules can then be identified
and performance dependency relations established between the called modules
and the modules which call them. This information is important for mainte-
nance personnel considering modifications to called modules in a program .

6.5 Identification of Shared Data Structures

The next mechanism in a program for the propagation of performance
changes to be considered is that of shared data structures. A straight
forward method of identifying this mechanism in a program would be to find
all shared data structures and the corresponding modules manipulating them .
This estimation, however , is not very accurate since only modules manipu-
lating the data structure in a manner that may affect the performance of
other modules utilizing this data structure are being investigated . As
previously discussed , the basic attributes contributing to performance in
this area are a module ’s storage and retrieval times for entries in the
data structure . The factors affecting storage and retrieval times vary
among the different types of data structures as well as the algorithms
utilized to manipulate these structures. For example , a factor that is
significant in many types of data structures is the number of entries
stored in the structure.

The modules manipulating shared data structures can be classified into
four categories based upon their utilization of the data structure . The
categories are:

1. Reference entries only

2. Update entries

3. Create new entries

25

V
V~ V ~~~~~~~~~~~~~~~~~

V~ •~~~~~~~~~_V ~~~~~ V~~~~~~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~ V~~~ ~~~~~~~~ V

- - V~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~ V V V

.t. De lete old entries

It is , of course , possible for a single module to exist in more than one
ci tt ’gorv .

The algorithm for identif ying performance dependencies in this area is
based upon the general notion that the number of entries in the data
st ructure ’ affects storage and retrieval times . One step of the algorithm
would then be the classification of the modu les sharing the data structure
a c c o r d i n g  to the above four categories . Perfor~~nce dependency relationships
could then be established between the modules creating the deleting entries
and the other modules sharing the data structure . The relationships are
v a l i d  since a modification to the modules creating or deleting entries may
result in an Increase in the number of entries in the data structure . This
may i t fect storage and retrieva l times , and ultimately the performance of

— the o t he r modules sharing the data structure.

b.h Identification of Modules Sensitive to Their Rate of Input

The next mechanism in a program for the propagation of performance
changes to b.~ studied is tha t of changes in the rate of input to a process.
One of the major fac tors that determine whether a module is sensitive to
its rate of input involves the module ’s storage structure for storing the
input . Modules with fixed size storage structures may experience overflow
problems . An increase in the rate of input may also resul t in the loss of
previous input values. Another problem may be that the module has insuf-
ficient time to process the input before being interrupted by anothe r Input .
An increase in the rate of arrival of inputs may also produce de lays in
servicing these inputs. Thus, the potential for performance requirement
violations is large when the rate of input to a process is increased .

6.7 Identification of Execution—Priority Sensitive Modules

The next mechanism for the propagation of performance changes to be
identified in the software involves execution priorities. As previousl y
discussed , execution priorities are set during the software develc ment
phases to insure correct sequencing or preservation of critical system
performance requirements . These priorities must be reflected in either
the software imp lementation , in particular the dispatching algorithms , or in
the accompanying documentation . The relative priority of modules executable
it the same time can then be compared . A performance dependency relation-
ship can  then be considered in existence between a higher priority module
and another which can execute at the same time . This relationship is im—
portant to maintenance personnel in determining the effect of a proposed
modification on the performance of other modules in light of the existing
e x e c u t i o n  p r i o r i t i e s .

6.8 IdentifIcation of Abstractions

The next mechanism for the propagation of performance changes to be
identified in a program is that of the “trojan horses,” i.e. the abstrac-
tions . The utilization of abstractions in a module can be easily identified

26

ii 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
__


~~~~~ -~~~ V ~~~~~~~~~~ —

by static analysis. Abstractions can be recognized in the module as sub—
routine calls , function calls , and macros . Performance dependency relation-
ships can then be established between the imp lementations of the abstractions
and the modules utilizing them. This information will be valuable In aiding
maintenance personnel evaluate possible changes of performance as a conse-
quence of a modification of an abstraction implementation .

7. PFRFORMANCE ATTRIBUTES

Performance attributes of a program are defined as attributes correspond-
ing to measurements of key portions of the execution of the program . For
example, one performance attribute of a module is it s  execution time .
Another is the utilization for a particular resource’ during the execution
of the program. There is a distinc t relationship between performanc e
attributes and the eight mechanisms for the propagation of performanc e
changes. The eight mechanisms operate as links between performance
attributes of modules . In other words , a change in a performance attri b ute
of one module can affect a performance attribute in another module’ via one
of the eight mechanisms . For examp le , let X represent the performa nce 

V

attribute corresponding to the time a resource is seized by module A.
Assume module B is in contention for the same resource with module A and let
Y represen t the performance attribute corresponding to the time module B
seizes the same resource . Then a change in performance attribute X can
affect performance attribute Y via the shared resources mechanism.

The relationship between performance attributes and the eight mechanisms
for the propagation of performance changes is illustrated in FI gure 11,
where the directed line labeled with a mechanism connecting two performance
attributes indicates a performance dependency relationshi p exists between
the performance attributes . For example , if performance attribute ’ two of
module A is modified , it can affect performance attribute two of module B
via mechanism one.

We will now present twelve software performance attributes. These
performance attributes are not a complete set of attributes corresponding
to measurements of the execution of the program . Instead , these performance
attributes are the attributes linked with the eight mechanisms as previ ously
discussed. For a given module , not all of these performance attributes ma\
be applicable.

Performance Attribute 1: The ability of the module to execute In paral lel
with another module.

Performance Attribute 2: For each resource in contention , the re lative time
that the module seizes the resource .

Performance Attribute 3: For each resource in contention , the relative ’ ti me
that the module releases the resource.

Performance Attribute 4: The relative time that the module begins executi on.

27

. .~~~~ . ~~~~~~ 



_____ V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ • V~~~~~~~~~~~~~~~~~~~~~~~~~ 

V V

MODULE A MODULE B V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure  11. Relationship of Performance Attributes and the
Mechanisms for the Propagation of Performance
Changes.

—- 

28 

~~~~~
_
~~~~~V_~~ - - ~~~~~~~~~~~~~~~~~~~~



Performance Attribute 5: The relative time that the module transmits a
message to another module.

Performanc e A t t r i b u t e  6: The execution time of the module ’.

Performance Attribute 7: For each resource utilized in the module , the
resource utilization by the module.

Performance Attribute 8: For each dependent iterative ’ structure in the
modul e, the number of i t e r a t ions .

Performance Attribute 9: For each da ta structure , the storage and rot r ie ’y:il
times for entries in the  da ta  s t r u c t u r e s .

Performance Attribute 10: For each data structure, the number of e n t r i e s
in the data structure.

Performance Attribute 11: For each data structure , the service ’ t ime of in
entry in the data structure , i . e . the relative tine that an e n t ry
remains in the data struc ture before being serviced .

Performance Attribute 12: The rate of input to the module .

8. CRITICAL SECTIONS OF A PROGRAM

Since the performance attributes of a program correspond to measurements
of key portions of the execut ion of the program , they can be affected during
the maintenance process by modifications to the program . A critical sect io n
of a program can be associated with each performance attribute such t h at  i f
this critical section is modified , the corresponding performance attribute
may be affected . For examp le , if the performance attribute under considera-
tion is the execution t ime between when a module begins execution and when
it transmits a message, the corresponding critical section is that section
of code between module invocation and transmission of the message . It
should be noted that a critical section for a particular performance’
attribute may be part of another critical section for a different perform-
ance attribute. In this case , a modification to a critical section wi thin
another critical section can affect the corresponding performance attr ih ’ite ’s
of both critical sections . The re lationshi p of performance attribut es ,
critical software sections, and the mechanisms for the propagati on of
perfo rmance changes is i l lus t ra ted  in F igure  12 , whe re the d i r ec t ed  l i n e
labeled with a mechanism connecting two performance attributes indicate s
a performance dependency relationship exists between the perf~.rma nce’
attributes . A directed line also connects each ce-Itical section (C.S.)
with its corresponding performance attribute . It is apparen t from Fi gur e  12
that a modification to C.S.1 being also a modification to C.S.2 implies
both P.A.2 and P.A.3 of Module A may be affected . Also , a change’ in P.\. 2
of Module A may affect P.A.2 of Module B via mechanism one . Thu s, the’
modification in Module A can affect the performanc e of Module B .

The identification of the critical sections correspond ing to the pe’r
formance attributes requires algorithms whose Input includes an identif ic a—

29



V 
~~~~~V ~~~~~~~~~~~~~~~~

MODULE A MODULE B

MECHAN I SM 1

MECHAN I SM 2

Figure 12. Relationship of performance a t t r ibutes (P . A .) ,
critical sections (C.S.) and the mechanisms for
the propagation of performance changes in a progrmn .

30

— V V~~ V~ . -a

- - .-

V

t i o n 01 the mechanisms in ex i s t ence in t h e p r o g r a m . These ’ al g o r i t h m s m r
iden t if ying the critical sections are formally described in our second
r e p o r t .

9. RIPPLE EFFECT OF PERFORMANCE CHANGE

The relationship of performance attribut es , critical sections , and t h e ’
mecha nisms for the propagation of performance changes in a p r o g r a m forn~c
the basis fo r the concept of a p e r f o r m a n c e change ri p p le ’— eff ecr as a con se’ —
quence of software modification. When a c r i t i c a l s e c t i o n is m o d i f i e d , it
i~av aff ect the corresponding pe r fo r ma nc e a t t r i b u t e s . A change In these
p e r f o r r i k i u c e a t t r i b u t e s may then ri pp le, i.e. at fe’ct other p e r f o r m a n c e
attributes via any app licab le mechanisms .

A performance dependency relationshi p is defined to exist be tween two
performance a t t r i b u t e s if a change in one of the p e r f or t ’~a nc e a t t r i b u t c ~
may affect the other performance attribute via one ~f the mechanisms for
the propaga t io n of pe r formance changes. Thus , the d e t e r m i n a t i o n of the
performance dependency re’lat ionshi ps requires an identificat ion of the
mechanisms in existence in the program. In our second report , rules for
formulating these performanc e dependency rt’lationships are presented in
detail. The format of these rules consists of the identific ation of a
pe r fo rmance dependency relationshi p between a performanc e attribute ’ of one V

type of a module and a particular performance attribute of another module
V

w i th the rest r ic t ion tha t the modules are involved in a performance
dependency relationship via one of the mechanisms . For examp le , one rule
states that a performance dependency relationship exists between performance’
attribute 2 of module X and performance attribute 2 of module ‘iT i f m o d u l c~j
K and Y are in a performance dependency relationship via the shared re-
sou rces mechanism . The performance dep endency re’l at i onsh i ps be twe en
performance attributes are then identified by app ly i ng these r u l e s to th~.’
actual program being analyzed . The performance dependency re’lationshlps
are then saved for utilization during the maintenance phase of the program.

10. MAINTENANCE TECHNIQUE FOR PREDICTING WHICH PERFOR NANCL REQUIRE MENT S
ARE AFFECTED BY THE ~.tA rNTErs1ANCE ACTIVITY

The maintenance process can be improved if m a i n t e n a n c e personnel a r e’
suppl ied wi th informa t ion enabl ing them to i n c o r p o r a t e p e r f o r m a n c e cons ider -
a t ions in their c r i t e r i a fo r s e l ec t ing the typ e’ and location of pr ogram
modif ica t io ns to be made. This informa t ion Is provided by the developmen t
of a maintenanc e techni que fo r predic t ing wh ich performanc e requirements
in the p rogram may be a f f e c t e d b y a propos ed m o d i f i c a t i o n . The p r e d i c t i o n
of which performance requirements may be affected by a program mod ific ation
is a difficult task due to the size and complexit y of des ign of many large-
scale software systems . Thus , the significancl ’ of this maintenanc e’
techni que lies in its ability to trace repercussIons introduced b~’ mainte-
nance changes and predict which performanc e’ requirements may be affected
by the change. The technique developed here is app l i c ab l e to a l l t y p o s of
la rge—scale sof tware systems possessing pe r fo rmance r e qu ir eme ’nt s i n c l u d i n g
multiprocessing systems . In the next section , we are’ going to prest’nt a

31

V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r

~~oe rd framework :or such a technique . The formal description of the
a l 5orithm s composing t h i s  technique as well as the proofs of the correctness
of t lte’se’ a 1 g o r i t h n ~s is included in our second report. Also inc luded in
t ha t re : o r r  is a d e m o n s t r a t i o n  of the maintenance technique d u r i n g  the
:ia t n t  e~O a L l c e ~ ‘h t s e  of a typical program .

t ) .l The ~ emer a l  Framework of the Maintenance Technique

rh~ mair~tenance technique consists of two phases. The first phase
v o s  the program and prod uces a data base which is saved for utiliza—

i on  in the  se~~ond p hase of the technique when maintenance activity is in
p~ ress . Thus , the  f i r s t  p hase can be pe r fo rmed  as soon as the program
ha’~i sucoessfullv passed its acceptance tests and is entering the operational
s t a g e  of its lire cycle. This first phase of the maintenance technique
consists of the following steps:

tL V ~SE ON ~ V

S to o l :  The p e r f o r m a n c e  requirements  for  the program must  be decomposed
into the k ey  p e r f o r m a n c e  a t t r i b u t e s  which  c o n t r i b u t e  to the preservation
or v iola ti on of the  performanc e requirements. The decomposition of a
per l or m a n c e V r e q u i r e m e n t  q u a n t i t a t i v ely i n t o  the  e f f e c t of i ts corresponding
performance attributes is a very complex task which Is not attempted In
t his t e c h n i q u e .  Instead , the decomposition is qualitative in nature , i. e.
:~erforna nce attributes are identified which contribute to the preservation
or violation of perform anc e requirements without consideration of their
relative magnitude towards the performance requirements. This simp lifica-
t ion is justified because this maintenance technique attempts to identify
p e V r f o r : : l a n c e  r e q u i r e m e n t s  which  ~~~~ be v io la t ed  due to the m a i n t e n a n c e
eff ort , and does not attempt to analytically confirm whether or not a 

-~
o e r f o r r n a n c e  req ui remen t is ac tuall y viola ted. The process of identifying
ke ’V herformanc e attributes contributing to a performance requirement is not
i d i f f i c u l t  process and can be accomplished manually. As requirement

V s t a t e m e n t  l anguages  c o n t i n u e  to develop , It is l ikely tha t  this process can
b e a u t o m a t e d .  FI gure 13 is an expansion of Figure 12 which includes a
descri otion of the relationship of performance requiremen ts, performance
a t t r i b u t e s , c r i t i c a l  S e C t f O f l S , and the  mechanism s for  the propagat ion of
t e V r f o r m ~1nc e changes in a program. In this figure , the direc ted line labeled
w itu a m echani sm c o n n e c t i n g  two performance a t t r i b u t e s  indicates a perform-
a n ce dependency  r e l a t i o n s h i p  exists between the performance a t t r ibutes . A
d i r e c t e d  l ine  also connects each c r i t i c a l  section with its corresponding
p e r f or m a nc e attributes . A uotted line is used to connect each pe r fo rmance
iti ribute with a perfo rmanc e requirement which may be affected if the
p e r f o r m a n c e  a t t r i b u t e  Is changed .

stej~~2: hete’rmine which mechanisms for  the propagation of performance
h a ng e s  are present  in the program.

~~~~~~~ Iden tify critical sections corresponding to the performance
at t r i b u t e s iden t i f i e d in Step 1.

~~~o~~~ 4 :  Identify performanc e dependency rela tionships between performance

32



V 
~~~~~~~~~~~~

~~~~~~~~~~~~~~~ -~~~~~~=-

MODULE_A MODULE B

V 

[P~.R. 1] E~~
R. 2j ______ ______

1~ CHANI SM 1

MECHANISM 2

_ _ _ _  _ _ _ _  
L~ _ _ _ _

[P.A. 2J I I ’ ~~~~
. 

~~ I 
3~ ______

Figure 13. Relationship of performance requirements ( P . R .) ,
performance a t t r ibutes  (P . A . ) ,  critical sections
(C.S . ) , and the mechanisms for the propagation of
performance changes in a program.

IL



____-

V V

at tributes present in the program.

PIU\SE 1’Wt~

iho se’c ø ~ d phaSe’ o I t Ii Is m a t  nt  enane- e ’ t ee hn I que is  a pp l I ed d u r i n g  t h e
ma In t o  na uce p roe es s . The i n p u t  o the t e c h n i que ~ In  t h i s  phase r e q u i r e s

11 ot  t h e  information about the’ program e’Ol lee t e d  and stored in a data
h i  Se ’ du r I r i g  t li e ’ irs t p hase of  t Lw ma t n t  ~‘na ne e t e e  hn I quo . Tb e s ecoiid phase
ot t h e  ma i f l t c n i n( ’e t e c h n I q u e  c o n s i s t s  of t lie f o l l o w i n g  s t e p s :

St  C V j  I :  I ek ’ut i t  v t h e  c n t  t e a  I S e c t  io n s  w h i c h  may be aft e’ct ed b y the  m a i n t e —
na n e e activit y . F l i t s  can be’ a v ery  d i l l  [c u l t  t a s k  b r  m a i n t e n a n c e ’ personnel
to p e r t  orm due’ to the ’ ac that program mod if t e a t  Ions often produce a ripp le—
e f t  o c t  requlr ing further modific. rt i ons  which mus t  he pe r fo rmed  on the  program .
In another task of t h i s  project , maintenanc e tools ar e  being developed to
p r e d t c t  t h i s  r i pp le ’ ~ f t e c t  of  log ica l  changes  as a consequence  of a program
mod it I cat Ion. Thus , when a p r ogram mod If I cat Ion is cons Id ~‘i eel . it will be
p o s s i b l e  to id ’nt I f v  t h e ’ p ot  ential ripp te—eftect , I .e. other sections of t he
p r o g r a m  w h i c h  may be a f f e c t e d  b y t h e ’ chan ge and , c o n s e q u e n t ly , r equ i r e
f u r t h e r  mod It i cj  t i o n .  It is t hen  p os s ib l e ’  t o  map these sect ions identified
i s  b e i ng  a ffected l~ t h e  ma lnte ’naiie ’e act~ vItv into the critical sections
identifi ed in Ste’p in Phase’ 1 ~t the maint enance technique.

St~j~~2: Aft er t he  c r i t  l e a  I ste ’t Ions aff e’e’ted by the  m a i n t e n a n c e  a c t i v i ty
have’ been identi fied , it Is then possible to de’term ine the corresponding
pe’rt ormanc e’ t r t h e i t  e’S whr Ic in may be ’ at tee t e’d by the  m a i n t e n a n c e ac t  i v i t y .
As d i seussed in Se ’c t Ion i~ , a c o r r e s p o n d e n c e  between performanc e attributes
and cr i t i c il sections cn n  be ’ established . Thus , during the m a i n t e n a n c e
1~r oc ’es s , one approach t o Ident I l y i n g  pe n t o r m a n c e  a t  t r i b u t e s  a f f e c t e d  by
t h e  u V i a in t en a n c e  act i v i t  v is to assume’ that a mod i f  i c a t  Ion t o  a c r i t i c a l
see t ion w i l l  i f f e ’ e t t h e ’ cor respond  lug  performance’ ~it  t r ih u t  es fo r  t he  c r i t i c a l

F S ee ’ t ion .  This  a p p r oa c h  l e a d s  to  a w or s t  —c isc ’ ld i ’ni t i f i c a ti on  of pe r formance
at t r i b u t e s  i f f e ’c ted by t h e  sot t w a r e  mod I f  l e n t  i on .  A second approach to
ident it

V
vlng p er t o r m an c e  a t t r i b u t e s  affected by th e so f tware  m o d i f i c a t i o n  is

to ‘~~l ie ’lt the hel p of t he  m a i n t e n a n c e  p e r s on n e ’l I m p l e m e n t in g  the  m o d i f i c a -
t i o n .  A f t e r the ’ critic a l sections aff e-ted by t h e  proposed modification have
b e e n  i d e n t i f i e d , t he ’ cor r e s p o n d i n g  p e r f o r m a nc e a t t r i b u t e s  for  these  c r i t i c a l
5Cc ’ t lens c iii t hen  he d i sp Ia~’ed to the  ma lot  e ’nan c e personnel  . The maintenance
personne I car) t h e n  decide ’ whe t her or not  the disp layed perf ormanc e attribute

hi  he ’ a t  I ecte’d based upon his knowledge of the proposed maintenance
mod i t  t e a t  i o f l .

St op ~: Ut  i i i . :  I r i g  t h e  per  formauc e dependency  r e l a t i on sh i p s  e s t ab l i shed  in
S t  e p  4 in  Phase’ 1, l d e ’nt i f y il I the p e r f o r m a n c e’ a t t r i b u t e s  a f f e c t e d  by

~h ir u r g ’ s t o  t h e  p c r f o r m a n e ’ e’ ; r t t r t h u t e ’s I d e n t i f i e d  in S t e p  2 o f  this phase.
Vflw oh ) t ’c t ly e  ot t h i s  st ep  is to predict a l l  t Il e ’ p e r fo rmance ’ ittrib ut e’s

t h r o u g h ou t  t he system which ire ’ a f t  ec ted  by t h e  program m o d i f i c a t i o n .  This
pr edi ct I on  i s  ha s  le a  l i v  .r W o r S t — c a s e ’ prediction except for the refinements
m t  roehitce d in the ’ l a s t  step.

St 4 :  U t  i i i  i lu g  t h e  l i s t  ~ t ‘e ’r t  or n un c e ’ at  t r  ib u t  e’s ident i fled in the last
u r t  e’p , ide n t  I t  v t hose per I ormanc e’ 1-equ I reme’nn t s wh i e’l i  max’ he a f fec  ted  by the’

14



- - ~~V ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

maintenance activity and , thus , should be retested to Insure  tha t  they have
not been violated . The performance requirements can be easily identified
b y the t raceabi l i ty  of the decomposition of the performance requirements
into the performance attributes in Step 1 of Phase 1.

The important steps of this maintenance technique are summarized and
put into perspective within the maintenanc e process in Figure 14. From
the example shown in Figure 13. the maintenance technique could be used to
predict the performance imp lications of modif ying C.S.1 of Module A.
In this examp le , P.A.2 and P.A.3 of Module A would be affected . Thus ,
performance requirements P.R.l and P.R.2 would have to be retested to Insure
that they have not been violated . In addition . P.A.2 of Module B would

V be a f f e c t e d  via mechanism one . Thus , P . R . 4 would a lso have to be r e t e s t e d
to insure that it too has not been violated.

10.2 App lication of the Maintenance Technique to the Retesting Phase of t he
Maintenance Process

After the maintenance changes have been imp lemented , this technique can
provide a significant contribution to the application of retesting the
program to verify that the performanc e requirements for the program have not
been violated by the maintenance effort . The retesting of large—scale
complex programs requires a great deal of time , effort , and expense. Thus ,
any savings resulting from this maintenance technique will clearl y justif~’
its use .

During the early stages of the maintenance process , this technique was
utilized as an aid in developing criteria for maintenance personnel to
evaluate alternate program modifications from a performance perspective’.
Basically, this involved the worst—case identifications of performa nce
requirements which might be affected by the program modifications . After a
program modification has been selected and implemented , the maintenanc e
technique can substantially refine its analysis and determine more accuratel y
which performance requirement s may have been affected by the program

L modifications . This is accomplished by determining whether or not a
performanc e attribute is actually affected before imp licating other per—
forniance attributes involved in a performance dependency relationship with
the given attribute. In other words , if a dependency re lationshi p exists
between performance attributes one and two, performance attribute two need
not be examined for changes if it has been determined that performance
attribute one is not affected by the maintenance activity. Thus , the
preliminary results of some of the early retesting efforts may be decisive ’
in the determination of the scale of retesting which remains to be done .
This technique is sur~~arized and put into perspective within the maintenance
process in Figure 15. It should be noted that if a violation of a p e r f o r m —
ance requirement occurs, it requires further software maintenance in order
to satisfy the performance requirement , and the entire process must he
repeated.

35



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—  -

MA I NT E NANCE PERSONN EL PROPOSE ALTERNA TE MODIF ICATiON S

FOR EACH PROPOSAL , THE LOGICAL RIPPLE—EFFECT IS ANALYZED TO
IDENTIFY SOFTWARE BLOCKS AFFECTED BY THE PROPOSED MODIF ICATION

THESE PROGRAM BLOCKS ARE MAPPED INTO CRIT iCAL SOV~WARE SECTI ONS

I
PERFORMANCE ATTRIBUTE S AFFECTED BY CHANGES

TO THESE CRITI CAL SOFTWARE SECTIONS ARE IDENTIFIED

I
THE EPFECT OF CHANGING THESE PERFORMANCE ATTRI BUTES IS TRACED
THROUGHOUT THE PROGRAM TO IDENT IFY ALL PERFORMANCE ATTRIBUTES

WHICH MAY BE AFFECTED

~
;

PERFORMANCE REQUI R~1ENTS WHICH MAY BE VIOLATED BY EACH PROPOSED
MODIFICATION ARE IDENTIFIED

MAINTENANCE PERSONNEL SELECT THE MA INTENANCE PROPOSAL MOST SUITABLE
FOR THE PROGRAM CONSIDERING TH E FUNCTIONAL AND PERFORMANCE

IMPL ICATIONS OF EACH PROPOSED MODIFICATION

Figure 14. The framework of a maintenance technique
in predicting which performance requirements
are affected by the maintenance activity

36

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~

I
MAINTENANCE PERSONNEL PROPOSE ALTERNATE MODIFICATIONS

FOR EACH PROPOSAL , THE LOGICAL RIPPLE-EFFECT IS ANALYZED TO
IDENTIFY PROGRAM BLOCKS AFFECTED BY THE PROPOSED MODIFICATION

THES E PROGRAM BLOCKS ARE MAPPED I NTO CRITICAL SOFTWARE SECT ION S

I
PERFORMANCE ATTRIBUTES AFFECTED BY CHANGES

TO THESE CRITICAL SOFTWARE SECTIONS ARE IDENTTFIED

I
THE EFFECT OF CHANGING THESE PERFORMANCE ATTRIBUTES IS TRACED
THROUGHOUT TH E PROGRAM TO IDENTI FY ALL PERFORMANCE ATTRIBUTES

WHICH MAY BE AFFECTED

I V

PERFORMANCE REQUIREM ENTS WHICH MAY BE VIO LATED BY EACH PROPOSED
SOFTWARE MODIFICAT ION ARE IDENTIFIED

MAINTENANCE PERSONNEL SELECT THE MAINTENANCE PROPOSAL MOST SU ITABLE
FOR THE PROGRAM CONSIDERIN G THE rUNCTIONAL AND PERFORMANCE

IMPLICATIONS OF EACH PROPOSED MODIFICATION

I
MAINTENANCE PERSONNEL IMPLEMEN T THE PROPOSED MODIFICATI ON

I
MAINTENANCE TOOL IS UTILIZED TO DETERMINE SCALE OF RETESTINC NEEDED

I
PROGRAM RETESTING BEGINS TO VERIFY PERFORMANCE REQUIREMENTS

ARE NOT VIOLATED

IF A PERFORMANCE REQUIREMENT I S IOLAT ED , FURTHE R MAI NTENANCE
ON THE PROGRAM IS NEEDED AND THE PROCESS IS REPEATED

Figure 15. Application of the maintenance technique in
the prediction of performanc e requ irements
affected by the maintenance activity and In
the retesting phase.

37

____ - — V ~—~
—-___w------ - -

I

11.0 FUTURE RE S EARCH AND CONCLUSION

11 .1 Dynamic Analysis

The significance of this maintenance technique has been shown to be its
ability to trace repercussions In t rod uced by maintenance changes and predict j
which performance requirements may be affected by the program modifications .
This information is very valuab le to maintenance personnel but its signifi-
cance can be even greater if It is supplemented by a profile of the dynamic
behavior of the program . This profile can provide maintenance personnel with
performance information about the program enabling them to identify per-
formance requirements which are close to being violated . This information
coup led with that predicting which performance requirements may be affected
by a program modification provide maintenance personnel with strong criteria
for selecting among alternative program modifications .

The profile of the dynamic behavior of a program also plays a signifi-
cant role in the retesting portion of the maintenance phase to insure that
the program modifications have not resulted in violation of any performance
requirements. After the maintenance modifications have been implemented and
the resul tant changes in performance analyzed , this informat ion can be used
along with the profile of the dynamic behavior of the program to determine
the scale of retesting which remains to be done . For examp le , if a process
has a performance requirement stating that it completes execution in 100
units , it will not be affected by a performance change of about 5 units if
the program ’s profile indicates it is current ly completing execution In
75 un i t s .

The profile of the dynamic behavior of the program is, thus , Important
in the maintenance phase. It should be noted that the profile itself is
dynamic since it only reflects the dynamic behavior in the current
environme n t . Neverthe less , i t is important in performance investigations
since the performance of the program is also dependent on the current
environment. It is, thus, meaningless to analyze performance considerations
utilizing a profile based upon a different operating environment .

More research is needed in the identification of appropriate dynamic
measurements to be included in this profile . It is seen from previous
sections that measurements pertaining to resource utilization , execution
times of critical software sections, system overhead , and degree of
saturation of data structures provide the most meaningful information for
the maintenance process. The feasibility of collecting many of these
measurements in large—scale software systems has already been demonstrated .
For example, JAVS provides a facility for capturing the execution time
spent in individual modules (251. The Program Evaluator and Test System
deve loped by Stucki 1261 also provides relative timing on the subroutine
level. System overhead has also been stud ’Ied for some time and both
hardware and software measuring techniques exist to identify many of its
sources . Measurements pertaining to resource utilization by software
processes have also been recorded using software probes . Data pertaining
to the time when a resource is requested and when that request is actually
satisfied have been collected on large—scale software systema with a

38

LVV~~ .~~~~~~~~~~
~~~~~~V ~~~~~



r
I

degradation of system performance due to resources committed to probe
operation not exceeding 5%. For example Figure 16 illustrates the types of
measurements that can be gathered for an executing process . In the figure ,
execution times between requests as well as probabilities that particular
branches from decision nodes are executed appear in the graph [271 . These
types of measurements would be important in f ormula t ing the prof i le of the
dynamic behavior of the program mos t applicable to the maintenance process.

11.2 Figure—of—Merit for Program Maintainability from a Performance
Perspective

The theoretical foundation for this maintenance techni que also forms
the basis for the development of a figure—of—merit for the program
maintainability of a system from a performance perspective . This figure—of—
merit is a measure of the impac t of maintenance activity on the performance
requirements of the program. This figure—of—merit could be computed for
the program as early as the design stage . It could then be refined with
information available after implementation to provide a more precise measure
of the maintainability from a performance perspective . It is seen from
the previous sections that several factors might contribute to this figure—
o f — m e r i t .  The first involves the degree of performance dependency relation-
ships in existence as indicated by the mechanisms for the propagation of
performance changes . The second involves the extent and stringency of t h e
performance requirements imposed upon the program . The performance of a V

program is a subject which ranges from quantitative analyses to qualitative
judgments 1281 . Thus, the figure—of—merit must be based from a user
perspective . The third involves the profile of the dynamic behavior of theV 
program . The current behavior of the program in perspective to its
performance requirements can provide insight into the degree of p e r f o rmance
changes that can b~ to lerated without  a performance requirement  violation .
For example, if the program is operating near a point of saturation , any
performance changes could lead to performance requirement violations . More’
research is needed In this area to identify additiona l factors contr ibuting
to the figure—of—merit and to integrate these factors into a meani ng ful
f igu re.

Most of the factors utilized in the computation of the figuro-ol —merit
would be app licable to the computation of a figure for the comp lexity of
modification to the program . More research is needed in the identif icati on
of additional factors contributing to this figure. The complexity measuro
would be valuable to maintenance personnel by providing a quantitative ’
comparison of potential program modifications in terms of their maintenanco
characteristics from a performance point of view .

11.3 Appl ica t Ion  to Design Phase

Throughout this report , the major emphasis has been upon t h e  p r o p a g i t  ion
of pe rformance changes as a consequence of program m o d i f i c a t i o n s . The
resul ts of this investigation will he valuable in evaluating current
software design techniques in terms of their abilit y to produce good
maintenance characteristics from a performance poInt of view .

39

-

~ 

V~~~~ V
VV V 

V~~~~~~~ ~~~~~~~ 
____



START 
V

10 ms

REQUEST
DISK

CHANNE L
.10 .90

2O ms 2O ms

REQUEST REQUEST
TAPE DEVICE

CHANNEL 3

20 ms 100 ms

REQUE ST .82 RELEAS E
DEVICE 15 ins DEVICE
4 3

.18
9 ms

RELEAS E
DEV ICE
4

3ms

RELEASE
TAPE

CHANNEL

Figure 16. The directed graph of resource utilization of a process.

_  V~~~~VVV V
± V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— - ~- ~~
__ _ _ -

11.4 Conclusions

The process of deve loping comp lex large scale sof tware systems
possessing performance requirements is costly, excessively time—consuming,
and difficult to manage. This process f requent l y leads to systems which are
unreliable , non—responsive to user—requirements, and logically too obscure
to be readily analyzed or maintained 1 29] . Yet these software systems
must be maintained , and the magnitude of this maintenance in terms of the
total software effort is very large . Thus, maintenance techniques are needed
tha t are specifically designed to predict the effect of software modifica-
tions and indicate test cases required for program retestlng (30]. The
maintenance technique outl ined in this report is designed with these
objectives in mind and should significantly aid maintenance personnel in
maintaining software systems.

41

_ _

~

V V V V~~ V~~~~~~

- - V

--

REFE R 1 NC F~

(1) Mills , H . 0., “Software Development ,” IEEE Trans. on Software
Engineering, Vol. SE-2 , No. 4, December 1976, pp. 265-273.

(2] Rye , P., Bamberger , F.. Ostanek , W.. Brodeur , N., and Goode , J.,
Software Systems Development: A CSDL Project History, RADC-TR-77-213 ,
pp. 33-41. (AG42l~ 6)

[3[Coodenough , J . B., et al ., “The Effect of Software Structure on
Software Reliabilit y . Modifiability, and Reusability: A Case Study and
A n a l y s i s , ” NTIS AL) 787 307. Ju ly 1974, p. 82.

-~ j Mc Cal l , 3. A., R i c h a r d s , P. K ., and Walters , C. F., Factors in Software

~~a1ity, Vo lumes 1 , I I , and I I I , Genera l Electric Company. pp. 2-3 ,
3 — 5 , 7—9.

(51 Yourdon , F. and Constantine , L., Structured Design, Yourdon , Inc.,
1976 , p . ~Q2.

[61 Be l ford , P. C., Donahee , J. D., and Heard , W. J., “An Evaluation of
the Effectiveness of Software Engineering Techniques ,” Digest of Papers,
COMPCON 17 7 (Fall), pp. 259-269.

(7) Herd , J. H., Postak , J. N., Russell , W. E., and Stewart , K. R. ,
So f tware Cost Est imation Study, Volume I. R.ADC-TR-77-220, June 1977 ,
pp. 88-89. (A042264)

(81 Doty, D. L., Nelson , P. J.,, and Steward , K. R., Software Cost Estima-
tion Study, Volume II , RADC—TR-77-220, August 1977, p. A-S. (A044609)

19] Parnas , D. L., “A Technique for the Specification of Software Modules
with Examples ,” Conin. of ACM, Vol. 15, May 1972 , pp. 330-336.

[10 1 Liskov , B. H. and Lilies , S. N., “Specification Techniques for Data
Abstractions ,” IEEE Trans. on Software Engineering, Vol. 1, No. 1,
March 1975 . pp. 7-19.

[111 White , J. R. and Booth , T. 1.., “Towards an Engineering Approach to
Software Design ,” Proceedings of the Second International Conference
on Software Engineering, 1976, pp. 214-222.

112 1 Cilkey, T. J., White, 3. R., and Booth , T. L., “Performance Analysis
as a Practical Software Design Tool , ” Proceedin~gs of COMPSAC ‘77,
pp. 428-435.

(13(Schneidewind , N. F., “Modularity Considerations in Real-Time Operating
System Structures ,” Naval Postgraduate School , pp. 7-11 .

(141 Branscomb , L. M., “The Everest of Software ,” Proceedings of the
Symposium on Computer Software Engineering, 1976, pp. xvii-xx .

42

__ - -~~ - - -~~~~~ - - - -~~ V

(151 Sholl , H. A . and Booth , T. L., “Software Performance Modeling Using
Computation Structures ,” IEEE Trans. on Software Engineering, Vol. SE-i ,
No. 4 , December 1975, pp. 414-420.

(16] Storey, T. and Todd , S., “Performance Analysis of Large Systems ,”
Software Practice and Experience, Vol. 7, 1977 , pp. 363-369.

[171 Davis , C. C. and Vick , C. R., “The Software Development System ,” I l EE
Trans. on Software Engineering, Vol. SE-3 , No. 1, January 1977 ,
pp. 69-84.

[18) Bell , T. E . and Bixier , D. C., “A Flow-Oriented Requirements Statement
L anguage , ” Symposium on Computer Software Engineering, l~ 76, pp. 109-
123.

[19] Alf ord , M . W. and Burns , I. F., “R-Nets : A Graph Model for Real-Time
Software Requirements ,” ~yt~posium on Computer Software Engineering,
1976 , pp. 97-107.

[20] Be l ford , P. C . , “SpecifiLations : A Key to Effective Software Develop-
ment ,” Proceedings of the Second International Conference on Software
Engineering, 1976 , pp. 71-79.

[21] Balkovich , E., “Research Towards a Technology to Suppor t the Specifi-
cations of DPSPR ,” Proceedings of the Second International Conference
on Sof tware Engineering, 1976 , pp. 110-115.

[22] Salter , K. C., “A Methodology for Decomposing System Requirements into .
Data Processing Requirements ,” Proceedings of the Second International
Conference on Software Engineering, 1976 , pp. 91-102 .

[23] Kosy, D. W., “Air Force Command and Control Information Processing in
the 1980’s: Trends in Software Technology,” June 1974, p. 18.

[24] Valette , R. and Diaz , M., “Top-Down Forma l Speci f i ca t ion and Verifica-
tion of Parallel Control Systems .”

[25] JAVS Technical Report Reference Manual, RA DC-TR-77-l26 , Vol. 2, April
1977. (A040l04)

[26] Stucki , L. C., “Automatic Generation of Self-Metric Software ,”
Proceedings of 1973 IEEE Symposium ofl Computer Software Reliability,
pp. 94-101.

[27) Anderson , J. W. and Browne, J. C., “Graph Models of Computer Systems :
Application to Performance Evaluation of an Operating System ,”
Proceedings of the Internat ional Symposium on Computer Performance
Modeling, Measurement, and Evaluation, 1976 , pp. 187-199.

43

- - -

(281 Kuck , D. J. and Kumar , B., “A System Model ~or Computer PerformanceEvaluation ,” Proceedjn2s of the International Symposium on CommuterJ~erformance Node1in.~~ Measurement, and Evaluation , 1976 , pp. 187-199.
[9 J DeWolf, B. J., ~Jiethodology for Requirements Specification andPre liminary Design of Real-Time Systems, The Charles Stark DraperLaboratory, Inc., J~dy 1977, pp. 1-1 to 2-20.

(30] Ramamoorthy, C. V. , and Ho, S. F., “Testing Large Software withAutomated Software Eva luation Systems,” Current Trends in ProgrammingMethodology Volume II, Prentice-Hall , Inc., edited by Ra ymond Yeh ,1977 , pp. 112-150.

1

~

I

- - - - -
~~

V~ ~~~~~~~~~~~~~~~~~~~~~ - - . -~~

__ _____________ —
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

MISSION
of

Rome Air Development Center
RAVC PL~n6 and execwteA te4eaxch, deve2op men.t, .te~~ and
4 elected acqw(.4i...t~on pn.og ’taln6 ~Ln ~uppo ’t.t o~ Command , Con~tito.e
Commw~vLca.tLon~ and In  U.Lg eiw.e (c 31)  act.~vA..t~eA. Teahn.~ac.L
and eng.~neexLng 6uppo ~t ~~tJu n a.kea4 o~ .techn.LaaL aompele.nae
.L~ p.tou~Lde.d .to ESD Pn.ogn.am 06~~ce~ ( P04 ) and o.theit. ESV
e2emen.t4. The p ir2ni~2po2 .teahnA.~a~ nil~~.Lon a~te~~ ake
commanA. a.t( on4 , e2e~,ttoma~ne.tcr~ gt~.dan~.e a.nd cmvt ’tot, -6u~L-ve,LL&zn~e o~ gkou.nd and aeJto4pac~e objeato , £n.teL&g ence da.ta
c~o!1ec2~on and handtLng , ~Ln~oiuw,.*.ion 4~.s~tem -tec.hno!~ogq,
.Lono4ph e~t.&~ pt opaga.td ~on, 4o.Ud 6ta.te ~~ence4, m~a.kot4uvep hy~~eA and elect ’ton.~c ‘t eVabW..ty, ma.Ln.to..&iabilLty and
c.ompa 2Lb.LUty. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


